
A Gimp plugin:
drawing a parametric curve as an

approximate Bézier curve

Version 2.1

July 2021

Introduction

These pages contain some instructions for a Gimp plugin Parametric curve.
The plugin draws a parametric curve approximately as a composite Bézier curve
(Gimp’s path). When installed, the plugin is found in Gimp’s menu at

<Image>/Filters/Render/Parametric curves/. . . .

In fact, there are three plugins:

• Parametric curve (cartesian),

• Parametric curve (polar),

• Parametric curve (read function from file).

I shall talk a little about each, though the first two are easy to use even without
any instructions if one just knows what parametric curves are.

The central goal when designing the plugins was to construct a reasonably
accurate approximate Bézier curve with only a sparse set of control points. To
this end, the plugin first tries to find on the curve some special points, such
as cusps and inflection points and some others, and then it creates an initial
subdivision of the curve according to those points. In this task the user can
help as will be explained below.

Creating the initial subdivision is the first of the two big phases in the work
of the plugin. The second is the actual approximation part: each subarc in
the subdivision is approximated with a composite cubic Bézier curve. The two
phases pose quite different problems. I don’t discuss here how the problems are
solved in the plugin; instead, I just try to make using the plugin easier.

1

Contents

1 Parametric curve (cartesian) 2

2 Parametric curve (polar) 5

3 Parametric curve (read function from file) 6
3.1 Extra parameters . 8

1 Parametric curve (cartesian)

We take first the basic one of the three plugins. It draws parametric curves
given in the form {

x = x(t)

y = y(t)
(a ≤ t ≤ b). (1)

This is a parametric curve (parametric arc) defined by means of two functions
x(t) and y(t) and an interval [a, b].

The GUI contains the following fields (though not literally quite as we show
them here).

curve name name of the curve

x(t) the function x(t)

y(t) the function y(t)

start t the starting value of the parameter t

end t the ending value of the parameter t

closed? is the curve supposed to be closed?

fit in window? should the size of the plot be adapted to the window?

padding if Yes above, how much padding around the plot

x of the origo the x coordinate of the origo in Gimp’s window

y of the origo the y coordinate of the origo in Gimp’s window

scale scaling factor to Gimp’s coordinates

draw the axes? should the coordinate axes be drawn?

custom values of t user-chosen parameter values to force anchors

messages should info be displayed of the running of the plugin?

Before explaining this all in detail, we take an example.

Example 1.1 As an example, a three quarters of a circle can be drawn as a
Bézier curve with center at (500, 500) and radius 100 (in Gimp’s coordinates)
by inserting the following inputs.

2

curve name 3/4 circle

x(t) cos(t)

y(t) sin(t)

start t 0.

end t 3*pi/2

closed? No

fit in window? No

padding 0

x of the origo 500

y of the origo 500

scale 100

draw the axes? No

custom values of t <empty>

messages No

Note that some of the inputs are supposed to follow Python’s syntax. Available
are all names in Python’s standard mathematical library, such as pi (meaning
π) and functions like cos and exp.

We describe now the meanings of the fields.

curve name

This is the name that will appear in Gimp as the name of the path.

x(t) and y(t)

The parametric curve we are drawing (approximately) is supposed to be given
in the form

f(t) = (x(t), y(t)), t0 ≤ t ≤ t1, (2)

meaning a function f : [t0, t1]→ R2 where [t0, t1] is a real number interval. The
x(t) and y(t) are functions R→ R. Thus, the circle above is thought to be given
as the function

f(t) = (cos t, sin t), 0 ≤ t ≤ 3π/2, (3)

hence x(t) = cos t and y(t) = sin t, and t0 = 0 and t1 = 3π/2.

start and end values of t

The start value and end value of t are the t0 and t1 above, so that [t0, t1] is
the interval where the parametric function is defined. In other words, they
determine which section of the (usually infinite) curve is drawn. In the circle
example above we had [t0, t1] = [0, 3π/2], causing the required circle arc to be
drawn.

3

closed

This field will be Yes or No in the GUI. The purpose is to tell Gimp if the curve
should be closed or not. For example, if drawing a full circle we set closed to
No, the starting and ending points of the resulting curve will be distinct though
quite similarly located. The point will be doubled, and the curve is not properly
closed. But with closed=Yes Gimp will know to close the curve.

(A bizarre fact is that even if the curve is announced to be closed in the
GUI and the starting and ending points of the curve are equal when calculated
mathematically, Gimp may still make a double point with a very tiny edge
between. In some cases, on the other hand, Gimp just closes the curve neatly.
Why this is so, is a mystery to the author. Probably it is about computing
precision.)

fit in window

If this field is Yes, the plot will be scaled and positioned to fill the window in
Gimp. In this case the inputs for the origo and scale are ignored.

padding

If you choose to have the plot fitted to fill the window, you may wish that it
does not fill quite the whole window. You can then then add some padding (in
pixels) and the plot will be a little smaller.

x and y of the origo for the plot and scale for the plot

If you want to specify explicitly where and how large the plot should be, set the
entry fit in window to No. The you can determine the exact placement and
scaling of the plot with these three inputs.

When you decide about the parametric curve to be drawn, such as for ex-
ample the full circle, you define the function

f(t) = (cos t, sin t), 0 ≤ t ≤ 2π, (4)

in some coordinate system, and of course you choose one that is most convenient
for that purpose. The plugin takes care of transforming things to the coordinate
system of Gimp’s window, and this is what the origo and scale are for. Their
meaning should be obvious. In order to these inputs to have any effect, the
entry fit in window must be No; otherwise they are just ignored.

draw the axes

If Yes, the coordinate axes are created as another path. They are always of full
width and height of the window.

4

custom values of t

When the plugin creates the path it has to decide where to set the anchors of
the path. Since on the other hand the plugin strives to keep the number of
anchors low, placement of those few anchors is crucial to the accuracy of the
approximation. The plugin has its internal algorithms for this and generally
they work very well, therefore usually you can just ignore the field in the GUI
about custom values.

Occasionally, however, you may wish to have anchors set at some specific
spots on the curve. Or it may happen that the plugin fails to find cusps or
inflection points, say, sufficiently accurately. In such cases you can input a list
of custom parameter values. This causes the plugin to put anchors at those
spots.

Note that the anchors will be exactly on the correct curve, while everything
between the anchors is approximation and necessarily slightly inaccurate. So,
if you want to have some points on the curve to be precise, it is achieved by
means of the custom parameter values.

Such a list of custom parameter values might look like

pi/4, pi/2, 3*pi/4 (5)

where the values should obey Python syntax. Expressions like 2*pi-pi/10 are
allowed. The values can be input like this, listed with commas as separators.
But they can also be given as one true Python list, such as

[pi/3 + k*pi/5 for k in range(10)] (6)

(this is Python’s list comprehension; note the enclosing brackets).
If the list is empty, it is ignored by the plugin. Some too close values may

be rejected. Also, values outside of the interval are ignored, hence it does not
matter if you input some extra values.

messages

If messages is set to Yes, the plugin will display some info in the error console.
At least there will be an accuracy measure of the result.

2 Parametric curve (polar)

Suppose you have to draw a curve given in the polar form, such as, for example,
r = exp(t) (logarithmic spiral). You can draw it with the plugin described
above since the curve can be written as (x, y) =

(
exp(t) cos(t), exp(t) sin(t)

)
.

But the plugin Parametric curve (polar) makes it easier: there you input only
one function r(t), in this case exp(t).

Otherwise this plugin is similar to that explained above.

5

3 Parametric curve (read function from file)

This plugin is similar to the first plugin Parametric curve (cartesian) except
that the functions x(t) and y(t) are not input in the GUI. Rather, the defining
function of the curve is read from a file where it is written as Python code. This
method has clear advantages: First, it is much more versatile since it allows
real programming of the function. Second, the function is not restricted to the
simple form (x(t), y(t)). Third, since the function is in a file it is automatically
saved.

There is the little complication that the user must create the input file before
using the plugin. But that inconvenience is negligible when compared with the
advantages.

Example 3.1 Let us take an example of what such file might look like. It must
be valid Python code. This example shows all inputs that the file can include
(with one omission, see Section 3.1).

def function(t): # Lemniscate
s = sin(t)
x = cos(t) / (1 + s**2)
y = x * s
return complex(x,y)

curve_name = ’lemniscate’
interval = [0, 2*pi]
closed = True
custom_params = [pi/2, 3*pi/2]

Of these inputs the first one (function) is mandatory. The other four are
optional. The names function, curve name, interval, and custom params
must be literally in this form.

These inputs override the values in the GUI; on the other hand, if any of
the optional names are missing in the file, the corresponding values in the GUI
will be used. There is one exception to this rule: if a list of custom parameters
appears both in the file and in the GUI, the plugin merges the two lists into one
and uses that.

I explain now each more closely.

function

This is the definining function of the curve, written as Python code. Note that
the function does not return [x,y] but complex(x,y). Internally the plugin
treates the plane as the complex number plane, and the same is used in this
input file.

6

curve name

This is a Python string which, if it appears in the input file, will be used as the
name of the created path.

interval

This is a Python list of two floats. If it appears in the input file it will replace
the values for start t and end t in the GUI.

closed

This is a Boolean value (True or False). If it appears in the input file it will
override the corresponding value in the GUI.

custom params

This is a Python list of floats. There may be such a list both in the file and
in the GUI. Neither overrides the other; rather, the plugin merges the lists. In
Example 3.1, in the statement custom params = [pi/2, 3*pi/2], the values
pi/2, 3*pi/2 give the two inflection points. We can think that the user (the
writer of the above example file) wanted the inflection points to be exact and
did not quite trust that the plugin can find them accurately enough on its own
(which is just realistic) and input the exact values just to make it sure.

Finally, let us see what kind of a curve the plugin draws with the input file
of Example 3.1: it is the lemniscate (of Bernoulli).

Example 3.2 The lemniscate would be easily made with the Parametric curve
(cartesian) plugin too by inputting in the GUI functions

x(t) = cos(t)/(1+sin(t)**2),
y(t) = sin(t)*cos(t)/(1+sin(t)**2).

But let us make this a little more complicated. Let us make an extra twist. Let
us try the following input file:

def function(t): # Lemniscate with a twist
s = sin(t)
x = cos(t) / (1 + s**2)
y = x * s
y *= 1 - 2 / (1 + 20 * x**2) # This line makes the twist
return complex(x,y)

7

curve_name = ’lemniscate with a twist’
interval = [0, 2*pi]
closed = True

This produces the following figure:

Now try to write this function as functions x(t), y(t)! It is possible but I
wouldn’t do it. But that is what you would have to do if you, instead of using
the plugin Parametric curve (read function from file) and an input file, tried
to do this with the plugin Parametric curve (cartesian) and its GUI. Then
imagine that you were doing some experimenting (like I was when finding that
twisting formula—but I was wise enough not to do it this way!). You would
have to write the functions in the GUI, without any typos. Then you would
write the functions in the GUI a second time but with some little changes as an
experiment. Then you would do it a third time, and so on.

Sorry about pounding on the same point, but the purpose of the previous
example was of course to demonstrate the advantage of using an input file:
experimenting requires only simple editing in the file. And another advantage:
You have at your disposal the whole machinery of coding in Python, including
if–clauses, loops, subroutines and so on and so on; and you can even easily
create functions which cannot be put in the simple form (x(t), y(t)). And yet
one: Your formulas don’t disappear when you close Gimp since they are safely
in the file.

3.1 Extra parameters

In the input file you can also write

boost_accuracy = 5

where the number is any float from 0 to 10; default is 0. This is currently the
only parameter offered to the user to tweak the inner working of the plugin.
A higher number causes the plugin to strive for better accuracy with the cost
of more numerous control points. Whether there will be any actual changes in
the resulting path, depends on the particular case.

It is feasible that in the future there may be other such extra parameters.
Namely, there are a number of such tweaking parameters, now hard-coded, that
can be changed only by editing the code. But on the other hand, it may well be
that those will never be offered as parameters in an input file since they would
require some understanding of how the plugin works internally.

8

