
A Gimp plugin:

drawing a parametric curve as an

approximate Bézier curve

Version 1.09

April 2020

These pages contain instructions for a Gimp plugin Parametric curves, designed

to draw a parametric curve, given in Cartesian coordinates, approximately as a

Bézier curve (Gimp's path). When installed, it is found in Gimp's menu at

<Image>/Filters/Render/Parametric curves.

The central idea in the plugin is to �nd an approximate Bézier curve with only

a sparse set of control points.

The plugin is applied through its GUI in Gimp. There are two ways to

use the plugin: the simple way just by �lling the �elds in the GUI, and the

advanced way by feeding inputs in a user-written �le. The former may be quite

su�cient for a quick task, but anything more complicated requires usage of an

input �le. Furthermore, the latter way brings several advantages: First, it o�ers

more control on the plot and the running of the plugin; second, it enables one to

draw several parametric curves simultaneously; third, the work becomes saved

automatically since it is written before-hand in a �le (and this is the only way

to save the input curve and the settings!); fourth, to de�ne the curves, available

is the whole machinery of Python programming.

The main disadvantage of the advanced method is its complexity and that

it requires some e�ort to master. The user may �nd it wisest to apply instead

another plugin, Simple parametric curve, or its counterpart Simple polar curve,

found at the same location in Gimp's menu if installed.

Those simple plugins have their own documentation elsewhere. We start now

studying the plugin Parametric curves. The text is in two parts: One covers

the simple way (inputs from the GUI), and the other the advanced way (inputs

from a �le).

1

Contents

1 Simple usage: inputs from the GUI 3
1.1 The GUI of the plugin . 3

2 Advanced method: Inputs from a �le 7
2.1 Names read from the �le . 7

2.2 pcurve_collage . 9

2.2.1 ParametricCurve . 10

2.2.2 CustomPoints . 13

2.3 c2bs . 15

2.4 c2bo . 17

2.5 coos . 18

2.6 drawo . 19

2.7 mark_polylines . 20

2.8 Summary . 22

2

1 Simple usage: inputs from the GUI

1.1 The GUI of the plugin

The GUI contains the following �elds (though not literally as we show them

here).

curve name name of the curve

x(t) the function x(t)

y(t) the function y(t)

starting t the starting value of the parameter t

ending t the ending value of the parameter t

custom values of t user-chosen parameter values to force anchors

closed? is the curve supposed to be closed?

�t in window? should the size of the plot be adapted to the window?

x of the origo the x coordinate of the origo in Gimp's window

y of the origo the y coordinate of the origo in Gimp's window

scale scaling factor to Gimp's coordinates

draw the axes? should the coordinate axes be marked as guides?

read �le? should inputs be read from a �le?

� �le if Yes above, choose the �le

level a number 1..100, controlling running of the plugin

messages should info be displayed of the running of the plugin?

Before explaining this all in detail, we take an example.

Example 1.1 As an example, a three quarters of a half circle can be drawn as

a Bézier curve with center at (500, 500) and radius 100 (in Gimp's coordinates)

by inserting the following inputs.

3

curve name 3/4 circle

x(t) cos(t)

y(t) sin(t)

starting t 0.

ending t 3*pi/4

custom values of t <empty>

closed? No

�t in window? No

x of the origo 500

y of the origo 500

scale 100

draw the axes? No

read �le? No

� �le <empty>

level 1

messages No

Note that some of the inputs are supposed to follow Python's syntax. Avail-

able are all names in Python's standard mathematical library, like pi (meaning

π) and functions like cos and exp.

We describe now the meanings of the �elds.

curve name

This is the name that will appear in Gimp as the name of the constructed

approximate Bézier curve.

x(t) and y(t)

The parametric curve we are drawing (approximately) is supposed to be given

in the form

f(t) = (x(t), y(t)), t0 ≤ t ≤ t1, (1)

meaning a function f : [t0, t1]→ R2 where [t0, t1] is a real number interval. The

x(t) and y(t) are functions R→ R. Thus, the circle above is thought to be given
as the function

f(t) = (cos t, sin t), 0 ≤ t ≤ 3π/4, (2)

hence x(t) = cos t and y(t) = sin t, and t0 = 0 and t1 = 3π/4.

starting and ending values of t

The starting value and ending value of t are the t0 and t1 above, so that [t0, t1]

is the interval where the parametric function is de�ned. In other words, they

4

determine where the drawn arc will start and where it will end. In the circle

example above we had [t0, t1] = [0, 3π/4], causing the required circle sector to

be drawn.

custom values of t

In the GUI the user may input a custom list of parameter values forcing the

plugin to include the corresponding points among the anchors of the Bézier

curve. Such a list might look like

pi/4, pi/2, 3*pi/4 (3)

where the values should obey Python syntax. Expressions like 2*pi-pi/10 are

allowed. The values can be input like this, listed with commas as separators.

But they can also be given as one true Python list, such as

[pi/3 + k*pi/5 for k in range(10)] (4)

(this is Python's list comprehension; note the enclosing brackets). If the list is

empty, it is ignored by the plugin. When the list is not empty, the corresponding

points on the original parametric curve will appear among the anchors of the

resulting Bézier curve. (Though some too close ones may be rejected, as so are

all those not inside the interval.)

The purpose of this feature is that occasionally the result may be unsatis-

factory. It was so in the case of the simple plugin, since that plugin makes no

e�ort in �nding any special points on the curve. In particular, cusp points are

troublesome. But the current plugin works much better since it does search

for suitable special points to create an initial subdivision before starting work

in earnest. This means that generally the user need not bother to input any

custom values.

But it should be noted that cases arise where feedíng the custom points is

essential, depending on the curve and on how accurate result the user wants.

closed

This �eld will be Yes or No in the GUI (meaning True or False). The purpose

is to tell Gimp if the curve should be closed or not. For example, if drawing a

full circle we set closed to No, the starting and ending points of the resulting

curve will be distinct though quite similarly located. In a way the point will be

double, and the curve is not properly closed. But with closed=Yes Gimp will

know to close the curve.

(A bizarre fact is that even if the curve is announced to be closed in the

GUI and the starting and ending points of the curve are equal when calculated

mathematically, Gimp may still make a double point with a very tiny edge

between. In some cases, on the other hand, Gimp just closes the curve neatly.

Why this is so, is a mystery to the author.)

5

�t in window

If this �eld is Yes, the plot will be scaled and positioned to �ll the window in

Gimp. In this case the next three entries in the GUI (the coordinates of the

origo and the scale) are ignored.

x and y of the origo and scale

When the user decides about the parametric curve to be drawn, such as the full

circle

f(t) = (cos t, sin t), 0 ≤ t ≤ 2π, (5)

it will be in some coordinate system, and the user of course chooses one that is

most comfortable. The plugin has to transform it to the coordinates of Gimp's

window, and this is what the origo and scale are for. Their meaning should be

obvious. In order to these inputs to have any e�ect, the entry fit in window

must be No.

draw the axes

If Yes, the coordinate axes are created, currently only as two guides. If either

axis is outside of the window, it will not be created.

read �le? and �le

The inputs or some of them can be inputted in a user-written �le. If read file

is set to Yes, the user has also to use the next �eld file to choose the �le. We

look at this more in detail in Section 2.

level

By the input level the user can to some extent determine how much the plugin

will work and how accurate the result will be. The level is an integer 1..100;

default is 1, and higher level may cause a larger number of control points on the

resulting Bézier curve (and higher recursion depth in the algorithm).

messages

If messages is set to Yes, the plugin will display some info in the error console.

There will always appear an accuracy measure of the result; the meaning of that

measure has no simple description but hopefully it will serve some purpose. In

addition, there may appear messages about decisions made by the algorithm,

or di�culties encountered; the messages might help the user to catch some

inadvertences in the inputs, in particular when some of the inputs are taken

from a �le.

Note however that the plugin often displays rather scary error messages. But

if it then �nally informs having �nished successfully with good accuracy, the user

can safely ignore the error messages. Namely, the plugin works recursively by

splitting arcs in two where necessary. So, if it �nds some arc too di�cult to

6

handle it may show an error message and then it simply goes to recursion, splits

the arc in two, and usually ends up with a quite good result after all.

Remark 1.2 Of the entries in the GUI, level and messages work di�erently

from the rest when inputs are read from a �le (next section): when inputs are

taken from a �le, the plugin obeys the settings of level and messages currently

appearing in the GUI (and there is no way to change them in the �le!). As for

the other entries, if some of them are unde�ned in the input �le, the plugin uses

default values for them, ignoring what happens to be in the GUI.

An explanation to why the author has chosen such behaviour, is that level

and messages control the running of the plugin and are not concerned with the

parametric curves or the plot.

And note that the simple plugins mentioned at the beginning behave di�er-

ently in this respect.

2 Advanced method: Inputs from a �le

2.1 Names read from the �le

The GUI is simple to try but too simple for serious work. Consider, for instance,

the di�culty of inserting the expressions for x(t) and y(t) and getting them

right (see Example ??). It is much easier to edit and save a �le for this purpose.

This choice also enables one to use much more complicated parametric functions

f(t): the whole machinery of writing Python functions is available.

Example 2.1 Take a decent text editor (like Notepad++) and create a �le with

the following contents. The text must be proper Python, with proper indenta-

tions and so on. Save the �le.

def astroid(t):

return [cos(t)**3, sin(t)**3]

pcurve = ParametricCurve(

function = astroid,

pcurve_name = "astroid",

start = 0.,

end = 2*pi,

closed = True,

custom = CustomPoints(params = [pi/2, pi, 3*pi/2])

)

pcurve_collage = ParametricCurveCollage(

pcurve_list = [pcurve],

collage_name = 'Astroid'

)

7

c2bs = Curve2BezierSettings()

c2bo = Curve2BezierOptions()

coos = CoordinateSettings(

fit_window = True,

)

drawo = DrawingOptions(

axes = True,

)

If in the GUI the entry read file? is set to Yes and the entry below it is used

to choose the above �le, and then OK is hit, the plugin draws precisely the same

astroid as before. To tell the truth, it may be ever so slightly di�erent because

of the list of custom points�we shall talk about that more later.

Admittedly, the contents of the �le must look strange. The meanings of the

various terms in the �le are discussed next. First, the plugin expects to �nd in

the �le de�nitions for certain names. The names the plugin reads from the �le

are the six in the following list.

pcurve_collage

c2bs

c2bo

coos

drawo

mark_polylines

Of these only the �rst is mandatory. The others can be omitted, which causes

the plugin to use some default values; for example, the line

c2bs = Curve2BezierSettings()

could have been left out entirely. The names mentioned in the list, if present,

must appear in the �le literally as they are above but their order can be arbitrary.

On the other hand, to implement the de�nitions one probably has to write some

extra Python code in the �le. In the example above, to de�ne pcurve_collage

we had to de�ne pcurve and astroid.

Remark 2.2 If inputs are read from a �le, the current entries in the GUI are

ignored, with the exception of level and messages (cf. Remark 1.2). The

settings of level and messages in the GUI are in force whether the inputs are

taken from the GUI or a �le (and there is no way to change them in the �le!).

As for other inputs, on the other hand, if a particular entry is not de�ned in the

�le, a default value is used and the value currently in the GUI is ignored�this

behaviour di�ers from the simple plugins.

However, the e�ect of level is obtained through the input �le too, by setting

the value of c2bs.max_error (see Section 2.3 below). Namely how the entry

8

level works, is that after reading the value of max_error from the �le (or

setting it to the default value if it is not speci�ed in the �le), the plugin replaces

the value with

max_error / level

before starting working, where the level is taken from the GUI. So for example,

the e�ect of max_error=0.01 in the �le and level=10 in the GUI, is equivalent

to the e�ect of max_error=0.001 in the �le and level=1 in the GUI.

Now we look at the input entries one by one.

2.2 pcurve_collage

The plugin is not restricted to drawing only a single parametric curve. It is

designed so that one can de�ne and draw several parametric curves in the same

picture. For this reason, in Example 2.1, the object pcurve_collage is the

container which could hold several parametric curves, though in this example

there was only one, called pcurve.

In the Python code for the plugin there is the de�nition of the class called

ParametricCurveCollage. The part which interests us now reads as follows.

class ParametricCurveCollage:

"""A collection of objects of class ParametricCurve together

with a name.

The purpose of the class 'ParametricCurveCollage' is to enable

drawing simultaneously several parametric curves in the same

picture using the same settings and options.

Initialization arguments:

- pcurve_list: [ParametricCurve]

- collage_name: string or None

"""

def __init__(self,

pcurve_list = None,

collage_name = None

):

...............

You see now that in Example 2.1 the lines

pcurve_collage = ParametricCurveCollage(

pcurve_list = [pcurve],

collage_name = 'Astroid'

)

create an object of class ParametricCurveCollage and initialize it by setting

(1) argument pcurve_list to the one-item list [pcurve], and (2) argument

9

collage_name to 'Astroid'. The latter is clear: it is just a string, the name

for the collage. But the �rst entry needs explaining. In the above extract from

the code, inside the comment we read:

Initialization arguments:

- pcurve_list: [ParametricCurve]

............

This informs that the initialization argument pcurve_list must be a list of

objects of class ParametricCurve. We explain that class next.

2.2.1 ParametricCurve

Class ParametricCurve is data structure for one parametric curve. Let us again

�nd the relevant part in the code:

class ParametricCurve:

"""A parametric curve in the xy-plane.

Initalization arguments:

- function: callable (function R-> R2 in Python)

- pcurve_name: string

- start: float

- end: float

- closed: boolean

- custom: CustomPoints or None

"""

def __init__(self,

function = None,

pcurve_name = "parametric curve",

start = 0.,

end = 1.,

closed = False,

custom = None,

):

..............

In Example 2.1 the lines

pcurve = ParametricCurve(

function = astroid,

pcurve_name = "astroid",

start = 0.,

end = 2*pi,

closed = True,

custom = CustomPoints(params = [pi/2, pi, 3*pi/2])

)

10

initialize such an object and give it the name pcurve (this name is arbitrary and

is only used when initializing the pcurve_collage). This initialization creates

an object which implements the parametric curve astroid

f(t) = (cos3 t, sin3 t) (0 ≤ t ≤ 2π). (6)

The initialization argument function must refer to a Python implementation

of a function R→ R2. In Example 2.1 there is �rst the de�nition

def astroid(t):

return [cos(t)**3, sin(t)**3]

which implements the function for the astroid. Then, in the initialization of

pcurve,

pcurve = ParametricCurve(

function = astroid,

pcurve_name = "astroid",

start = 0.,

end = 2*pi,

closed = True,

custom = CustomPoints(params = [pi/2, pi, 3*pi/2])

)

this function astroid is set as the value for the argument function. The next

four entries are clear: pcurve_name sets the name for this parametric curve

(not to be confused with the name of the whole collage); start and end set the

starting and ending values for the parameter t; and closed tells Gimp that the

curve should be closed. The �nal entry, custom is more complicated, and we

defer the discussion of it to Section 2.2.2. We take �rst another example.

Example 2.3 Let us see what the input �le looks like if we are drawing more

than one curve at the same time. We take our astroid, and in the same picture

we draw also the astroid rotated by 30 and by 60 degrees. So, we build a collage

consisting of three parametric curves. The �le might look as follows, where we

have dropped everything not strictly necessary (resorting to default values):

def astroid(t):

return [cos(t)**3, sin(t)**3]

def astroid30(t):

angle = pi/6

c,s = cos(angle), sin(angle)

x,y = cos(t)**3, sin(t)**3

x,y = x*c - y*s, x*s + y*c # Rotation

return [x,y]

def astroid60(t):

11

angle = pi/3

c,s = cos(angle), sin(angle)

x,y = cos(t)**3, sin(t)**3

x,y = x*c - y*s, x*s + y*c # Rotation

return [x,y]

pcurve = ParametricCurve(

function = astroid,

pcurve_name = "astroid",

start = 0.,

end = 2*pi,

closed = True,

)

pcurve30 = ParametricCurve(

function = astroi30,

pcurve_name = "astroid 30",

start = 0.,

end = 2*pi,

closed = True,

)

pcurve60 = ParametricCurve(

function = astroid60,

pcurve_name = "astroid 60",

start = 0.,

end = 2*pi,

closed = True,

)

pcurve_collage = ParametricCurveCollage(

pcurve_list = [pcurve, pcurve30, pcurve60],

collage_name = 'Three astroids'

)

Indeed, this �le draws the following �gure. The three astroids will be three sep-

arate vectors objects in Gimp. We shall later see how they can be automatically

merged into one object.

12

The �le above is meant to be easy to read. A seasoned Python coder would

write it much more concisely.

2.2.2 CustomPoints

In Section 1.1 we saw, in the connection with the GUI, that the plugin can be

forced to include some chosen points as anchors of the resulting Bézier curve.

There those custom points where inputted as anchors of an auxiliary path. The

advanced method (inputs from a �le) too allows the same thing, but now the

way of inputting the custom points is quite di�erent. They are inserted as

numerical values in the initialization argument custom of the object of class

ParametricCurve. We saw above the following de�nition.

pcurve = ParametricCurve(

function = astroid,

pcurve_name = "astroid",

start = 0.,

end = 2*pi,

closed = True,

custom = CustomPoints(params = [pi/2, pi, 3*pi/2])

)

Here [pi/2, pi, 3*pi/2] is the list of custom points. Its e�ect is that the

three cusps of the astroid (excluding the starting and ending point) will appear

as anchors, ensuring that the Bézier curve will certainly get the cusps exactly

right.

There are, in fact, three forms to input the custom points. Above we see the

name CustomPoints, appearing in

CustomPoints(params = [pi/2, pi, 3*pi/2]),

which is, as one can guess, initialization of an object of class CustomPoints. To

see what that class is like, we refer again to the code of the plugin:

class CustomPoints:

"""User-defined points on the parametric curve which the user

13

wants to be forced as anchor points of the approximate Bezier

curve, in addition to the anchor points which the program

itself makes.

The custom points can be given in any of the following three

forms, or even in two or three forms simultaneously. Custom

points is the means for the user to provide, for example,

exact cusp points or inflection points - rather than just

relying on what the program itself finds, which is always a

little inexact.

Here "raw coordinates" means the coordinate system in which

the input parametric curve is defined, and "screen coordinates"

means the coordinate system of the screen of the drawing

application.

Initialization arguments:

params: a list [...,t,...] of custom parameter

values t such that each f(t) will be a

custom point

(default=[]);

points: a list [...,[x,y],...] of custom points

[x,y] in raw coordinates

(default=[]);

screen_points: a similar list [...,[x,y],...] of custom

points [x,y] but in screen coordinates

(default=[]).

"""

def __init__(self,

params = [],

points = [],

screen_points = []

):

.............

That should explain it. We take one example.

Example 2.4 Suppose that we are one more time drawing the astroid and

we wish to input the same three custom points as above. In addition, for

some strange reason, we wish to get anchors somewhere in the vicinity of points

(±1/3, 1/3) in the "raw coordinates" (the coordinates where the astroid function

was de�ned) and somewhere near the point (600, 600) in Gimp's window. Then

the whole de�nition of pcurve would be the following:

pcurve = ParametricCurve(

function = astroid,

pcurve_name = "astroid",

14

start = 0.,

end = 2*pi,

closed = True,

custom = CustomPoints(params = [pi/2, pi, 3*pi/2],

points = [[1/3,1/3], [-1/3,1/3]],

screen_points = [[600,600]]

)

The points listed in points or screen_points need not to lie on the astroid;

rather, for any such point the plugin tries to �nd the closest point on the true

mathematical astroid to be used as an anchor. If any of the arguments params,

points, or screen_points is omitted, the plugin uses an empty list as default.

2.3 c2bs

We return to the list of the names that the plugin reads from the �le:

pcurve_collage

c2bs

c2bo

coos

drawo

mark_polylines

The �rst one is already explained. We take now the second one, c2bs. It

enables the user to adjust inner working of the plugin. To say it bluntly, the

user probably does wisest to leave it alone. But we explain it here anyhow. If

you wish to use it, you type in the input �le something in the form:

c2bs = Curve2BezierSettings(...)

with a list of some arguments. This is initialization of an object of class

Curve2BezierSettings. From the code of the plugin we learn:

class Curve2BezierSettings:

"""Numerical parameters to manage how a parametric curve is

resolved approximately as a Bezier curve.

Initialization arguments:

angle: the maximum allowed turn in each

subdivision arc (forced to between

30 and 180 degrees with tolerance

of 1e-8)

(default=90 degrees);

refinement: higher refinement forces refinement of the

subdivision along the whole curve, increasing

the number of anchor points otherwise used

(default=0);

15

max_error: maximum allowed relative error

('max_error' is forced to between 0.0005

and .5 but these are arbitrary limits)

(default=0.01);

max_recursion: if the error (in initial computation), for

some arc of the subdivision, appears to be

larger than the allowed maximum ('max_error'),

then the program goes to recursion by

splitting the troublesome arc in two, so

increasing the number of anchor points; the

value 'max_recursion' is the maximum allowed

recursion depth; setting it to 0 suppresses

recursio.

(default=3);

"""

def __init__(self,

angle = pi/2,

refinement = 0,

max_error = 0.01,

max_recursion = 3

):

............

Of these we describe only the angle. The plugin follows the idea that it splits

the input curve recursively into smaller pieces when trying to �nd an acceptable

approximation. But prior to going to do any recursion, the plugin tries to make

its work easier (and presumably getting better �nal result) by dividing the curve

�rst at some special points and then only after that doing the main work on

each smaller arc separately. Construction of this initial subdivision on the curve

is the �rst big phase in the algorithm. The user can, actually, determine which

special points are searched for; about this in the next section. But the most

important are (1) cusps, (2) points of locally maximum or minimum curvature,

and (3) the points controlled by angle: the points where the curve has turned a

certain amount in one direction. To explain the last one, consider as an example

a spiral�for example, a long arc of the logarithmic spiral. To approximate it

by a Bézier curve, some subdivision has to be made, but there are no cusps,

no in�ection points, or any other special points. The plugin makes the initial

subdivision by dividing the curve into arcs which turn at most by the amount of

the value of angle. The default value for angle is 90◦, which works quite well.

The user may set it to some smaller value, say 45◦, thus getting more precise

approximation with the cost of a larger number of control points. Or the user

can experiment with larger values for angle at ones own risk.

16

2.4 c2bo

With the next name, c2bo, the user may decide which special points on the

curve are searched for in the construction of the initial subdivision (see the

previous section). The choice is done by writing in the input �le something like:

c2bo = Curve2BezierOptions(...)

with a list of arguments. This initializes an object of class Curve2BezierOptions.

In the code of the plugin we read:

class Curve2BezierOptions:

"""Boolean parameters to manage which special points are

searched for and are included among subdivision points

(in addition to the user-defined custom points if any).

The default values should be safe. Other choices may cause the

algorithm to fail but often may give interesting results.

Initialization arguments (all Boolean):

cusp_points: include cusp points

(default=True);

high_curvature_points: include points of locally highest

curvature

(default=True);

low_curvature_points: include points of locally lowest

curvature

(default=True);

straight_end_points: include both start and end points

of straight line segments

(default=True);

inflection_points: include inflection points

(the program forces this to be

- False if 'low_curvature_points'=True,

- True if 'low_curvature_points'=False

and 'angle_turn_points'=True)

(default=False);

angle_turn_points: include subdivision points to ensure

that each arc turns at most by the

amount of 'angle' (set in the attribute

'angle' in an input argument of class

Curve2BezierSettings)

(default=True).

"""

def __init__(self,

cusp_points = True,

high_curvature_points = True,

17

low_curvature_points = True,

straight_end_points = True,

inflection_points = False,

angle_turn_points = True

):

..............

Perhaps there is no need to explain this any further. The user may experiment.

2.5 coos

Inserting in the input �le a line

coos = CoordinateSettings(...)

with some arguments, the user initializes an object of class CoordinateSettings

which controls working with coordinates. Recall that we have two coordinate

systems: the one where the input parametric curve is de�ned (cf. the astroid

examples above), and the coordinates of Gimp's window where the plot is drawn.

The code of the plugin tells us:

class CoordinateSettings:

"""Manage how the final plot is positioned on the screen.

Initialization arguments:

fit_window: Boolean: determines if the plot is to be fit

in the window minus the paddings

(when 'fit_window' is True, the settings for

'origo_x', 'origo_y', and 'scale' are ignored)

(default=True);

padding: float: the padding to be left empty on the

screen as a fraction of the window size when

'fit_window' is True

(it is forced that 0 <= padding <= 0.45)

(default=0.);

origo: a pair of floats: where to set the origo on

the screen in screen coordinates

(ignored if 'fit_window' is True)

(default=[500,500]);

scale: scaling factor from raw coordinates to screen

coordinates

(ignored if 'fit_window' is True)

(default=100.).

"""

def __init__(self,

fit_window = True,

padding = 0.,

18

origo = [500.,500.],

scale = 100.

):

.............

This all should be self-evident.

2.6 drawo

A line

drawo = DrawingOptions(...)

with some arguments in the input �le causes initializion of an object of class

DrawingOptions which controls what objects will be drawn on the screen. From

the code:

class DrawingOptions:

"""Boolean parameters to manage which objects are to be

drawn.

Here "drawing" means creating a separate Gimp vectors object,

inserting it in Gimp, and making visible; or, for the

coordinate axes, it means creating guides.

The 'pcurves' mentioned below are the elements of

'pcurve_input.pcurve_collage.pcurve_list' where

'pcurve_input' is an object of class ParametricCurveInput.

Thus, 'pcurve_list' is the list of parametric curves to be

drawn simultaneously in the same picture using the same

settings and options.

Initialization arguments:

bezier_curves: Boolean: if True, then the resulting Bezier

curves (approximations of the elements

'pcurves') are not only computed but also

drawn, each Bezier curve individually

(default=True);

bezier_collage: Boolean: if True, then from the Bezier curves

mentioned above, a combined object is created

and drawn (in Gimp this means one vectors

object where each one of the 'pcurves' appears

as one stroke)

(default=False);

axes: Boolean: if True, then the coordinate axes are

marked as guides on the screen

(default=False);

19

x_axis: Boolean: if True, then the x axis is

marked as a guide on the screen

(default=False);

y_axis: Boolean: if True, then the y axis is

marked as a guide on the screen

(default=False);

exact_pcurves: Boolean: if True, a sparse set of points on

each exact input parametric curve is drawn

(default=False);

handles: Boolean: if True, the anchors and handles of

the computed Bezier curve are drawn

(default=False);

"""

def __init__(self,

bezier_curves = True,

bezier_collage = False,

axes = False,

x_axis = False,

y_axis = False,

exact_pcurves = False,

handles = False

):

If bezier_curves=False and bezier_collage=True, the parametric curves

in the collage are not drawn individually; instead they are merged into one

vectors object which is drawn.

The reason behind the options exact_pcurves and handles is the following.

The option exact_pcurves gives the user chance to check visually how well the

computed Bézier curves approximate the input curves. If it is True, the plugin

makes another vectors object (for each pcurve in the collage) which shows a

sparse set of points along the exact mathematical input parametric curve. Note

that the computation of the sparse point set is completely independent of the

algorithms with which the program computes the approximate Bézier curve,

hence it is indeed a good way to check the result.

The option handles enables the user to see visually what kind of control

points the program has chosen. That is something the user may be curious

about, and it is likely to have some relevance when trying to �nd the best

settings for some speci�c task. The handles are constructed5 as a separate

vectors object.

2.7 mark_polylines

The last entry, mark_polylines, is distinct from the main working of the plugin.

It enables the user to embellish the picture with line segments (polylines). To be

more precise, the polylines include single points, line segments, open polylines,

20

and closed polylines (polygons).

The format is

mark_polylines = a list of items (polylines)

where each item (a polyline) is of one of the following three forms:

[[x0,y0],[x1,y1],...,[xn,yn]]

[[x0,y0],[x1,y1],...,[xn,yn], False]

[[x0,y0],[x1,y1],...,[xn,yn], True]

with each xi and yi �oat. So, each polyline is just a Python list of points in

the plane (the vertices of the polyline) with one optional item which is either

False or True. That last item tells if the polyline is supposed to be closed. If

the last item is omitted, it is taken to be False; so of the three forms above,

the �rst and the second are equivalent�an open polyline.

Let us take an example. Suppose we are given six points p0, p1, p2, p3, p4,

p5 in the plane (that is, each pi is of the form [x,y] where x and y are �oat).

Then the following commands in the input �le,

poly0 = [p0]

poly1 = [p1, p2]

poly2 = [p3, p4, p5, True]

mark_polylines = [poly0, poly1, poly2]

will produce a vectors object consisting of three strokes: (1) one point p0; (2) a

line segment from p1 to p2; (3) a closed triangle with vertices p3, p4, p5.

It should be noted that if the user sets fit_window=True in the entry coos

(CoordinateSettings), the polylines are not taken into account when �tting

the drawing in the window, so they may fall outside of it.

Example 2.5 If in the �le of Example 2.3 we add lines

mark_polylines = [

[

astroid(0), astroid30(0), astroid60(0),

astroid(pi/2), astroid30(pi/2), astroid60(pi/2),

astroid(pi), astroid30(pi), astroid60(pi),

astroid(3*pi/2), astroid30(3*pi/2), astroid60(3*pi/2),

True

]

]

we get the following picture.

21

One closed polyline was drawn. If we had had several polylines to add, it would

have been done in the same mark_polylines clause.

2.8 Summary

We draw a scheme about all the inputs that the plugin reads from a �le. Recall

that pcurve_collage is the only mandatory.

Names

pcurve_collage = ParametricCurveCollage(pcurve_list = (*),

collage_name

)

(*) [ParametriCurve(function,

pcurve_name,

start,

end,

closed,

custom = CustomPoints(params,

points,

screen_points

)

)

]

c2bs = Curve2BezierSettings(angle,

refinement,

max_error,

max_recursion,

)

c2bo = Curve2BezierOptions(cusp_points,

high_curvature_points,

low_curvature_points,

22

straight_end_points,

inflection_points,

angle_turn_points

)

coos = CoordinateSettings(fit_window,

padding,

origo,

scale

)

drawo = DrawingOptions(bezier_curves,

bezier_collage,

axes,

x_axis,

y_axis,

exact_pcurves,

handles

)

mark_polylines = [(**)]

(**) = one of:

[[x0,y0],[x1,y1],...,[xn,yn]]

[[x0,y0],[x1,y1],...,[xn,yn], False]

[[x0,y0],[x1,y1],...,[xn,yn], True]

Types

ParametricCurveCollage(

pcurve_list: [ParametriCurve]

collage_name: string

)

ParametriCurve(

function: callable (float -> [float,float])

pcurve_name: string

start: float

end: float

closed: boolean

custom: CustomPoints

CustomPoints(

params: [float]

points: [[float,float]]

screen_points: [[float,float]]

23

)

Curve2BezierSettings(

angle: float

refinement: integer >= 0

max_error: float

max_recursion: integer >= 0

)

Curve2BezierOptions(

cusp_points: boolean

high_curvature_points: boolean

low_curvature_points: boolean

straight_end_points: boolean

inflection_points: boolean

angle_turn_points: boolean

)

CoordinateSettings(

fit_window: boolean

padding: float

origo: [float,float]

scale: float

)

DrawingOptions(

bezier_curves: boolean

bezier_collage: boolean

axes: boolean

x_axis: boolean

y_axis: boolean

exact_pcurves: boolean

handles: boolean

)

mark_polylines = [one of:

[[x0,y0],[x1,y1],...,[xn,yn]]

[[x0,y0],[x1,y1],...,[xn,yn], False]

[[x0,y0],[x1,y1],...,[xn,yn], True]

]

24

